Anharmonic vibrational calculations based on a QM/MM potential

Kiyoshi Yagi kiyoshi.yagi@riken.jp

Theoretical Molecular Science Laboratory RIKEN Cluster for Pioneering Research

2019/11/10

- In this guide, I will illustrate how to combine MakePES and GENESIS to generate anharmonic potential energy surface (PES) for complex systems using QM/MM, and how to calculate the vibrational spectrum using sindo.
- MakePES and sindo are command line based programs. This guide assumes that you are familiar with basic commands in UNIX. Shell scripts are given for Bourne Shell (bash).
- This guide also assumes that you have installed the program. Change "/path/to" to your installation directory when you see a command like this,

```
sindo_jar=/path/to/sindo-4.0/jar
java -cp '$sindo_jar/*' RunMakePES
```

• This sample is based on a QM/MM tutorial of GENESIS,

https://www.r-ccs.riken.jp/labs/cbrt/tutorials2019/tutorial-16-1/

where QM/MM calculations are carried out for an alanine tripeptide (Ala₃) in water solvent. It is recommended to go through this tutorial (and other GENESIS tutorials) before starting this guide.

Contents of Sample Files

The following folders are included in this sample:

- toppar
- 2_setup/snapshot50.crd, pdb, psf
- 4_qmm-min/qmmm_min.rst
- 5_qmmm-vib/qmmm_vib.minfo
- 6_mkqff
- 7_mkgrid1
- 8_mrpes
- 9_anharm

Force field parameters Setup files Optimized geometry Normal modes QFF generation 1MR-Grid generation 2MR-MRPES generation Vibrational calculations

Files from the GENESIS tutorial

This sample is based on a QM/MM tutorial of GENESIS,

https://www.r-ccs.riken.jp/labs/cbrt/tutorials2019/tutorial-16-1/

where QM/MM calculations are carried out for an alanine tripeptide (Ala₃) in water solvent. The first residue is treated by QM (B3LYP-D3/cc-pVDZ) and the others by MM (CHARMM36m, TIP3P). The following files are taken from the tutorial.

- 2_setup/snapshot50.psf, pdb, crd
 - The files prepared by qmmm_generator
 - Ala₃ + 1999 water molecules (6039 atoms)
- 4_qmmm-min/qmmm_min.rst
 - GENESIS restart file containing the QM/MM optimized structure
- 5_qmmm-vib/qmmm_vib.minfo
 - A minfo file containing the normal modes and harmonic frequencies

toppar

CHARMM 36m force field for Ala and TIP3P for water

2_setup/ snapshot50.pdb

5_qmmm-vib

Before anharmonic calculations, let's review what we've got from the harmonic normal mode analysis. In the GENESIS tutorial, we obtained partial normal modes of an amide group at the c-terminal. Open 5_qmmmvib/qmmm_vib.minfo using JSindo. The amide modes looks as follow:

We will use these modes (mode 9 -12) in the following anharmonic calculations.

6_mkqff

Proceed to 6_mkqff to find input files to generate quartic force field (QFF) for Ala₃,

```
> cd 6_mkqff
> ls
gaussian.com makePES.xml runGau.sh* script.sh*
log/ qmmm_mkqff.inp
```

We first run MakePES in generic mode. makePES.xml looks as follow:

makePES.xml				
<makepes></makepes>	specify the minfo file			
<minfofile_value=" 5_qmmm<="" td=""><td>-vib/qmmm_vib.minfo" /></td></minfofile_value=">	-vib/qmmm_vib.minfo" />			
<mr value="3"></mr>	3MR-QFF			
<activemode value="9-12"></activemode>	set the Amide modes to active			
<qchem></qchem>				
<program <="" td="" value="generic"><td>/></td></program>	/>			
<title value="B3LYP-D3/cc-</td><td>·pVDZ"></title>				
<xyzfile <="" td="" value="makeQFF"><td>'> the name of xyz file</td></xyzfile>	'> the name of xyz file			
<qff></qff>				
<stepsize value="0.5"></stepsize>				
<ndifftype value="grad"></ndifftype>	set to gradient			
<mopfile value="prop_no_1.</td><td>mop"></mopfile> the name of mop file				

Running the program creates makeQFF.xyz,

```
sindo_jar=/path/to/sindo-4.0/jar
java -cp '$sindo_jar/*' RunMakePES -f makePES.xml >& makePES.out1
```

makeQFF.xyz is written in the usual xyz format,

		makeQFF.xyz	
4 mkqff	The number of at eq name of the first	coms point	
СҮ	-4.0454035711	6.0518032658	-1.0542278638
ОҮ	-3.6124748284	6.0503734927	0.1129067982
Ν	-3.2838770225	5.8998076018	-2.1586664849
HN	-3.7438296522	6.0476346883	-3.0591784947
4			
mkqff	8–0 name of the seco	nd point	
СҮ	-4.0042961166	6.0463168527	-1.0649806269
ОҮ	-3.6218945397	xyz coordinates $_4$	0.0984053428

Note that the coordinates are printed only for the atoms active in the vibrational analysis, that is, the amide group.

```
> grep -c mkqff makeQFF.xyz
41
```

Next, we run GENESIS to caluclate the energy and gradient at the grid points. In the input file, [VIBRATION] section looks as follow:

qmmm_mkqff.inp	
[VIBRATION] runmode = QFF nreplica = 4 vibatm_select_index = 2 gridfile = makeQFF.xyz	
[SELECTION] group1 = atomno:1-14 group2 = atomno:5-8	

- runmode
- nreplica

٠

vibatm_select_index

Set to QFF.

of MPI processes to parallelize over the grid points.

ndex Select VIB atoms through [SELECTION] section.

Note that the VIB atoms must match with the atoms in the gridfile.

• gridfile The name of xyz file.

The input for GENESIS also has [QM/MM] section with the following options:

In this sample, we use Gaussian for the QM program. qmcnt and qmexe are a template input a and an execution script file, respectively. qmatm_select_index specifies the QM region to be atomno:1-14, that is, the first residue of Ala₃.

The template file looks as follow. #coordinate#, #charge#, and #elec_field# are replaced by the program. Note that we need to set a "force" option to obtain the gradient.

The first part of runGau.sh is as follow. Make sure that the path to Gaussian and a local scratch directory are set correctly.

```
runGau.sh
# --- Set the path for Gaussian ---
export g09root=/path/to/gaussian
...
# --- Set the path for a scratch folder ---
scratch=/scr/$USER
```

Now, we run GENESIS. The following command invokes 4 MPI processes using 8 thread. The number of MPI processes must match with "nreplica" in [VIBRATION] section of the input.

```
> export QM_NUM_THREADS=8
> export OMP_NUM_THREADS=8
> mpirun -np 4 --map-by node:pe=8 atdyn qmmm_mkqff.inp >&
qmmm_mkqff.out
```

You will see the following message in the output if the jobs are running,

Compute energy	at grid points	: minfo files c	created in [minfo.files]
Done for	mkqff8-0 :	replicaID =	3
Done for	mkqff8-2 :	replicaID =	1
Done for	mkqff-eq :	replicaID =	2
Done for	mkqff8-1 :	replicaID =	4

and the results are stored in a "minfo.files" directory,

> ls minfo.files		
mkqff-eq.minfo	mkqff10_9-0.minfo	<pre>mkqff11_10-1.minfo</pre>
mkqff10-0.minfo	mkqff10_9-1.minfo	mkqff11_10-2.minfo
• • •		

When the GENESIS job is done, we run MakePES again,

```
sindo_jar=/path/to/sindo-4.0/jar
java -cp '$sindo_jar/*' RunMakePES -f makePES.xml >& makePES.out2
```

Then, it will create a mop file, where the information of QFF coefficients are included.

Proceed to 7_mkgrid1 to find input files to generate 1MR-Grid PES for Ala₃,

> cd 7_mkgrid1

We again run MakePES in generic mode, but now for Grid PES. makePES.xml looks as follow:

makePES.xml				
<makepes></makepes>	nm-vih/ammm_vih_minfo" />			
<mr value="1"></mr> <activemode <="" td="" value="9-12"><td>1MR-Grid /></td></activemode>	1MR-Grid />			
<dipole value="true"></dipole> <qchem></qchem>	calculate dipole mement surfaces			
<program b3lyp-d3<="" td="" value="generi
<title value="><td>ic" /> /cc-pVDZ" /></td></program>	ic" /> /cc-pVDZ" />			
<xyzfile value="makeGri
</qchem>
<grid></td><td>id"></xyzfile> the name of a xyz file				
<pre><ngrid value="11"></ngrid> <fullmc value="true"></fullmc> </pre>	the number of grid points in each coordinate generate all 1MR terms			

Running the program creates makeGrid.xyz,

```
sindo_jar=/path/to/sindo-4.0/jar
java -cp '$sindo_jar/*' RunMakePES -f makePES.xml >& makePES.out1
```

makeGrid.xyz is written in the usual xyz format,

		makeGrid.xyz	
4	The number o	of atoms	
mkg-e	q The name of t	he first point	
СҮ	-4.0454035711	6.0518032658	-1.0542278638
OY	-3.6124748284	6,0503734927	0.1129067982
N	-3.2838770225	5.8998076018	-2.1586664849
HN	-3.7438296522	6.0476346883	-3.0591784947
4			
mkg-q	9–11–0 The name of t	he second point	
СҮ	-3.9448692389	6.0383854347	-1.0805253292
ОҮ	-3.6355121192	xyz coordinates 8	0.0774413538

Again, the coordinates are printed only for the atoms active in the vibrational analysis, that is, the amide group. You can count the number of grid points by,

```
> grep -c mkg makeGrid.xyz
41
```

Next, we run GENESIS to caluclate the energy at the grid points. In the input file, [VIBRATION] section looks as follow:

- runmode Set to GRID.
- nreplica
- vibatm_select_index

of MPI processes to parallelize over the grid points. Select VIB atoms through [SELECTION] section. Note that the VIB atoms must match with the atoms in the gridfile.

- gridfile The name of xyz file.
- datafile

The name of dat file.

The [QMMM] section is the same as before. The template file looks almost the same, but now we don't need a "force" option.

NOTE: In fact, we don't use the field (the gradient for MM atoms), so "Prop=(Field, Read)" is not needed either. However, this option must be present in the input due to a restriction of the current program. This will be fixed in the near future.

Run GENESIS as before,

```
> export QM_NUM_THREADS=8
> export OMP_NUM_THREADS=8
> mpirun -np 4 --map-by node:pe=8 atdyn qmmm_mkgrid.inp >&
qmmm_mkgrid.out
```

The results are written to makeGrid.dat,

When the GENESIS job is done, we run MakePES again,

sindo_jar=/path/to/sindo-4.0/jar
java -cp '\$sindo_jar/*' RunMakePES -f makePES.xml >& makePES.out2

which will create pot and dipole files,

```
> ls *.pot
eq.pot q10.pot q11.pot q12.pot q9.pot
> ls *.dipole
eq.dipole q10.dipole q11.dipole q12.dipole q9.dipole
```

Proceed to 8_mrpes. Here, we will generate 2MR-Grid PES for Ala₃ by a multiresolution method. We first copy the QFF and 1MR-Grid files to current directory.

```
> cd 8_mrpes
> cp ../6_mkqff/prop_no_1.mop .
> cp ../7_mkgrid1/*pot ./
> cp ../7_mkgrid1/*dipole ./
```

We run MakePES in generic mode. makePES.xml looks as follow:

```
makePES.xml
<makePES>
 <minfoFile value="../5 qmmm-vib/qmmm vib.minfo" />
          value="2" />
 <MR
                             2MR-Grid
 • • •
 <grid>
                       the number of grid points in each coordinate
   <ngrid value="9" />
   <mcsstrength value="10"/>
   <mopfile value="prop no 1.mop"/>
 </grid>
                    generate all 2MR terms if mode coupling
</makePES>
                    strength (MCS) is larger than 10.0. MCS is
                    evaluated from QFF coefficients in a mopfile.
```

Running the program creates makeGrid.xyz,

sindo_jar=/path/to/sindo-4.0/jar
java -cp '\$sindo_jar/*' RunMakePES -f makePES.xml >& makePES.out1

In the output, you will find a message,

```
makePES.out1
Setup MakeGrid module
o Setup MCS: Read QFF Data via ../6_mkqff/prop_no_1.mop ... [OK]
o ngrid = 9
o 1MR Grid:
12 9 10
o 2MR Grid:
(9,12) (10,12)
```

which detects that Q12Q9 and Q12Q10 are coupled with MCS > 10.0. The grid points are written to makeGrid.xyz. You can count the number of grid points by,

```
> grep -c mkg makeGrid.xyz
128
```

The input file for GENESIS is the same as before. Run GENESIS by,

```
> export QM_NUM_THREADS=8
> export OMP_NUM_THREADS=8
> mpirun -np 4 --map-by node:pe=8 atdyn qmmm_mrpes.inp >&
qmmm_mrpes.out
```

When the GENESIS job is done, we run MakePES again,

```
sindo_jar=/path/to/sindo-4.0/jar
java -cp '$sindo_jar/*' RunMakePES -f makePES.xml >& makePES.out2
```

which will create pot and dipole files,

```
> ls *.pot
eq.pot q10.pot q11.pot q12.pot q12q10.pot q12q9.pot q9.pot
> ls *.dipole
eq.dipole q10.dipole q11.dipole q12.dipole q12q10.dipole
q12q9.dipole q9.dipole
```

9_anharm

Finally, we perform vibrational calculations. Proceed to 9_anharn to find the input files for sindo.

> cd 9)_anharm			
> ls				
log/	runSindo.sh	vci.inp	vmp2.inp	vqdpt2.inp vci-IR.gpi

These input files run VCI[4]-(8), VMP2-(4), VQDPT2-(4). The calculation is invoked by a script, runSindo.sh:

runSindo.sh				
<pre>> cat runSindo.sh SINDO=/path/to/FSindo/bin/sindo set the path to SINDO export POTDIR=/8_mrpes</pre>				
\${SINDO} < vmp2.inp > vmp2.out 2>&1 \${SINDO} < vqdpt2.inp > vqdpt2.out 2>&1 \${SINDO} < vci.inp > vci.out 2>&1				

Note that we read the information of the PES from 8_mrpes (specified by POTDIR).

From the output file, we obtain a table like this:

	HARM	VSCF	VMP2	VQDPT2	VCI
ZPE	4041.58	4016.35	4012.44	4012.44	4012.01
Amide III (9_1)	1314.99	1316.74	1307.31	1307.31	1305.71
Amide II (10_1)	1576.51	1572.46	1559.88	1559.88	1560.42
Amide I (11_1)	1704.22	1698.11	1691.15	1691.15	1691.25
Amide A (12 1)	3487.43	3305.84	3358.45	3347.85	3347.26

We may also plot the IR spectrum using gnuplot,

> gnuplot vci-IR.gpi

If we magnify the high frequency region, we see overtones and combination tones of the amide I, II, and III.

